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SUMMARY

Exact closed form solutions of the boundary layer equations can be

derived for the Nusselt number NU(x) at the leading edge x = 0 and, in

the limits Pr _0 and Pr _ _, on the surface x _ 0 of arbitrary bodies

in planar uniform flow. Exact and approximate solutions for Nu(x)/Nu(0)

in the range 0 < Pr < _ are compared to the results of the Pr _ 0 and

the Pr _ _ methods. It is shown theoretically and confirmed by the

numerical results that the Pr _ 0 method yields an upper limit for

Nu(x)/Nu(0). The presented examples show that the Pr _ method yields

a lower limit for Nu(x)/Nu(0) in case of slender bodies. In the cases

for which similarity solutions exist, both methods yield the exact

solution for Nu(x)/Nu(x*) where x* is any reference station. By use

of exact stagnation point solutions for _u(0_, the Pr _0 and the

Pr _ = methods may be applied to obtain engineering estimates of the

heat transfer parameter Nu(x)/_'_.

I. INTRODUCTION

Many engineering problems involve the case treated in this paper,

the heat exchange between an impermeable wall and the planar laminar

flow of an incompressible fluid with constant material properties under

the assumption of negligible frictional heating. The mathematical treat-

ment of this problem starts from the equations of continuity, momentum,

and energy. The boundary layer versions of the equations of momentum

and energy may be employed if both the Reynolds number Re = LO u_/_

and the Peclet number Pe = Re Pr are sufficiently large, where Pr =

_g cp/k is the Prandtl number. Exact solutions of this boundary layer
problem are presented in references 2, 5, 8, i0, 13, 16, and 22. In-

tegral solutions of the Karman-Pohlhausen type are presented in re-

ferences 4, 17, and 23. The energy equation for the temperature distri-

bution in the boundary layer is a linear second-order differential



equation, which can be integrated analytically only in special cases

because of the explicit occurrence of the velocity components u(x,y)

and v(x,y) as coefficients in this equation.

The integration becomes generally feasible in the limiting cases

Pr _ 0 and Pr _ =. If 5v is the thickness of the velocity boundary

layer and if 5 t is the thickness___ of the temperature boundary layer,

lim /_ . lim /bt_
-_ - 0

0_5_] - ana Pr _ =kb_J = 0. The process Pr _ 0 is compatiblePr

with the above mentioned condition Pe = Re Pr = (uo_L)(p g cp/k) >> 1

if it is accomplished by _ _ 0. For Pr _ 0, then the velocity distri-

bution u(x,y) throughout the temperature boundary layer may be approxi-

mated by the velocity distribution Ue(X ) at the outer edge of the

boundary layer; ue(x) is a result of ideal fluid theory and, corres-

pondingly, violates the no-slip condition, u(x,0) = 0, at the wall.

For Pr _ _, the velocity distribution u(x,y) throughout the temperature

boundary layer may be approximated by the wall tangent u = y Tw(x)/_,

where Tw is the wall shear stress.

Lighthill presented an exact analysis for the approach Pr _ _ in

reference 12. References 3, II, and 20 treat approximately valid

extensions of Lighthill's "High Prandtl Number Method," Pr_=, by the

inclusion of a quadratic term in the expression for u(x,y). It seems

that the application of the approach Pr _ 0 first appeared on pp. 597-

600 of reference 7. Reference 14 presents the basic equations for the

"Low Prandtl Number Method," Pr _ 0, and the equations for a first-

order correction as part of a series expansion in terms of powers of

Pr. The rather involved correction terms are worked out in reference

14 only for power laws representing the speed Ue(X ) at the outer edge

of the boundary layer and the wall temperature Tw(x). Fig. I, which

is taken from reference 14, shows for constant wall temperature and

zero pressure gradient that the first-order correction improves the

results of the approach Pr _ 0 only for Pr < 0. i.

This paper presents a comparative evaluation of the high and the

low Prandtl number methods and of published exact or approximate

solutions for the range 0 <Pr <
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DEFINITION OF SYMBOLS

Velocity gradient at stagnation point

Wall friction coefficient

Specific heat

C Constant in the equation (19)

g m/sec 2 Gravity constant

k kcal/m °Ksec Thermal conductivity

L m Reference length

m and n

Lqw(X)

Nuz = k[Tw(0)_To ]

Xqw(X)

Nu2 = k[Tw(X).To ]

_g c
Pr =

k

Exponents in the equation (19)

Nusselt number defined in the equation (15)

Nusselt number defined in the equation (20)

Prandtl number

p kg/m 2 Pressure

qw ='k_T(y _0) kcal/m2sec Wall heat transfer

Re I =

Lp u
oo

Reynolds number defined in the equation (13)

Ree =

xp u (x)
e

U
Reynolds number defined in the equation (20)

T °K Temperature

T °K
O

Constant temperature at outer edge of

boundary layer
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T OK
W

U m/see

u m/see
e

Boo m/see

v m/see

x m

x* m

y m

8t m

8v m

/x
O

_ m2/sec

D kg sece/m 4

Ta kg see/m 2

m

T1 m2/see

m

DEFINITION OF SYMBOLS (Cont'd)

Wall temperature

Velocity component in x-direction

Velocity at outer edge of boundary

layer

Speed of ambient uniform flow

Velocity component in y-direction

Coordinate measuring parallel to wall

Reference value on x-scale

Coordinate measuring normal to wall

Thickness of thermal boundary layer

Thickness of velocity boundary layer

Angle, Fig. 5

Ue(X)dx m2/sec Velocity potential

Stream Function

Density

Viscosity

Dummy variable for x

Dummy variable for

Wall shear stress
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II. THELOWPRANDTLNUMBERMETHOD

The boundary layer problem under consideration is governed by the
three differential equations

_u _v
_x + _y = 0, continuity equation, (i)

8u bu i dp + E 82u
u _x + v _y = - p ax p _ '

momentum equation, and (2)

_T _T k _mT

u v.._+ v v_ = Pg c _ve, energy equation, (3)
_-j

P

(see, e.g., p. 136/37 of reference 15). The continuity equation (i)

can be satisfied by a stream function _ so that

_,(x,y) _,(x,y)
By = u(x,y) and _x = -v(x,y). (4)

The von Mises transformation is introduced in order to replace x and

y by x and *(x,y) in the energy equation (3). If the derivative with

to x when y is constant is denoted by (_/_X)y, with a similarrespect

notation for other derivatives, the following transformation formulae

may be derived (see p. 152 of reference 15):

y= -v xand

(s)

X X X X

The relations (3) and (5) yield the equation

_.._T pgkc _ I _]= _ u . (6)
P

As Pr _ 0 through _ _ 0, the energy equation (6) may be replaced by

_T k _mT

: Pg Cp _-_ '

(7)



x

where _(x) -- ? Ue(X)dx. The following initial and boundary conditions

o

are assumed for the solution of the energy equation (7):

T(0, 4) = To = const., for _ > 0, at the leading edge _ = x = 0, (8)

T(_, 0) = Tw(_) , for _ _ 0, at the wall _ = O, where Tw(0)#T ° (9)

in general, and

lim T(_, _) = To = const, at the outer edge of the boundary (i0)
_ _ layer

where Tw(_) is a given continuously differentiable function of _.

Equations (7) through (I0) determine a problem of the type of

transient one-dimensional heat conduction. The application of pertinent

solution methods in reference I yields the equation (A-13) in the appendix

1p cp n (X)dTw(,q) d'q , (11)%(x) = _ (x) o +
_=0

for the heat transfer rate qw(X) = - k_T(x,0)/_y at the wall y = 0. Since

d_(x)/dx = Ue(X ) > 0 between the forward stagnation point x = 0 and the

trailing edge, equation (ii) may be replaced by

The following definitions of the Reynolds number, Prandtl number, and

Nusselt number are employed:

Lpu
Rel = , (13)



Bgc
Pr _ _ and

k

L qw(X)
NUl(X) = k[Tw(0)-T o] "

According to p. 70, reference 19,

Ue(X) x
__C_

u_ L
with c = const.

(14)

(i5)

(16)

in a small vicinity of the forward stagnation point, i.e.,

u (x)/u II 2c'
lim e co = _c and Nui(0 ) = Re i Pr --.

x-_0 W(x)/u_L' |

Thus the following relation may be derived for x >_.0:

(17)

UeX + ]i l uoo Ue(X) __d _w (_)'T d ILNu_(x)=

NuI(0) _ [ _ uoo _

III. APPLICATION OF THE LOW PRANDTL NUMBER METHOD

TO CASES FOR WHICH SIMILARITY SOLUTIONS EXIST

Similarity solutions of the boundary layer equations (i) through

(3) exist if the material properties are constant and if the power laws

u (x) /x_m _ToD for n # O, or
e__t___

= C q_J and T (x)-T ° =
(19)

um __ w ]hTw(0)-T ° = const,

are valid, where C, D, m, and n are constant numbers, For convenience,

the Reynolds number and the Nusselt number are defined here as follows:

px u (x) xqw(x)e

- and Nue(x) = k[Tw(x)_r_ ]. (20)Ree(x) B



Data for Nue(x)/ VRee(x)l resulting from exact numerical similarity
solutions of the equations (i) through (3) are derived in references 5
and I0 for several sets of values m, n, and Pr. Reference 12 presents
additional results for n = 0 and Pr = 0.7. The data presented in
reference I0, which pertains to the ranges -0.0904 < m < 4, -2.5 < n < 4,
and 0.7 _ Pr _ 20 maybe correlated with a ± 5%margin of error b_ the
function

Nue(x)
= pr%(m)Bo(m,n), (21)

where

Bo(m,n) = 0.57 (0.205_) 0"I04 i+_ nm

0.254 < %(m) < 0.367, and _ = 2m/(m+l).

(22)

Since, according to equation (19),

X

f uooCL _x_m+l_(x) = Ue(X)dx = _ kL / ,
O

(23)

qW(X) = E_Tw(0)'To] _ IPr Re2(x]
(24)

for constant wall temperature. The heat transfer parameter then takes

the following form:

Nue(x) _ Xqw(X) = I --m+ll
_Ree(x)' k[Tw(0)'To ] Re_e (x)I Pr _ .

(25)

Equation (Ii) becomes in case of the power laws (19) for Ue(X )

and Tw(X)-To, i.e., in case of variable wall temperature,

IPrRe (x) !_Tw(X)-T O {Zm+1 ._m+--_"_=_(x) d (_])m+--_" dl]

(26)



The heat transfer parameter then takes the form

Nue(x)
n m+l

-- -- -n

n (m+l ._m+lCx_ 2: F m-"a"t,u-"e's) Jl(x), (27)

where _ = i

J1(x) = _(x)

_0

n i
and M - m+l 2 ' (28)

The right-hand side of equation (27) is independent of x because of the

relations (23) and (28); therefore,

Nue(x)
= pr I/2 Bl(m,n). (29)

The function Jl can be evaluated in closed form when M is a positive

integer number, and the following values may be obtained for Bl(m,n)

in case of suitably selected pairs of numbers m and n:

m 0.25

1.875

4

n 0.5 i 3 2.5

Bl(m,n) 0.8862 1.4862 1.2533 1.8800 1.9817

IV. THE HIGH PRANDTL NUMBER METHOD

Lighthill approximates the velocity profile u(x,y) in the limit

Pr-+ oo by the expression

(x) V2 w(x)i Vu(x,y) = w _/(x,y)', (30)
I/ Y = . IX



i0

Y

where _(x,y) = / u(x,y)dx = ye_w(X)/2 _.
The substitute of the relation

(30) into equation (6) yields

(31)

Lighthill has solved this partial differential equation by use of

Heaviside's operational method in reference 12 and has obtained the

relation

/Pr \I/3_ Tw(0) -TO

)
o

dTw(_) d_ _

+ d_ /rz=x hl/3 "

_:0 _J T i/2(z)dz)
Z=_ W

+

(32)

For a vicinity of the stagnation point, an exact solution of the Navier-

Stokes differential equations yields

3/2

u_ _w(X) = 1.2326 (o-_) x,
(33)

according to p. 70-73 of reference 19.

(15) and the usual definition

If the relations (13) through

T (x)
W

of(x) = 72 (34)

of the wall friction coefficient are employed, the following equations

may be derived:

Nuz(0) = 0.660 prl/3Rezl/2 _
and (35)



ii

Nut(x)= [
Nul(0)

I I/2'cf(x)Rel

x 1/3

(/ Icf(_)Re11/2' d L_)

+

-T i

= Tw(_) d L

z=x i/3]'

+ _cf(x) Rell/2' d--('Tw(0)_ T Rell/2,

(36)

V. APPLICATION OF THE HIGH PRANDTL NUMBER METHOD TO CASES

FOR WHICH SIMILARITY SOLUTIONS EXIST

The wall shear stress becomes in case of the velocity distribution

(19)

3/2 3m-____l

2
(x) = (p_t)i/2f_(m) x

w
(37)

Numerical results for the function f_(m) have been derived in references

5,9, and 12 and are represented in figure 2 by disregarding a few incon-

sistent numbers from reference 9. Equation (32) yields for constant wall

temperature

x [Tw(O)'ro ]er"1/3_ 1/2..F3L4 ,, J]1/3= 0.538 _ Kee ix)iT (m+l) fw(m)| (38)%(x)

and the heat transfer parameter, which is defined in the relations (20),

takes the form

_Ree(x)' = 0.538 Pr I/3 (m+l) fw(m) (39)

Equation (32) becomes in case of the power laws (19) for Ue(X ) and

Tw(X)-To, i.e., in case of variable wall temperature,
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where
-- =i

m+l x n- i

J2(x) = x n" -_-/ <x_)

i;o
X

<_>¼ (m+l)]'I/3 d !i- X " (41)

The heat transfer parameter, which is defined in the equations (20), then

takes the form

m+l

Nu2(x) 1/3 -n+

[3 ,, ] = prl/3B2(m,= 0.538 (m+l) fw(m) prl/3nx Je(x) n),

(42)

where B2(m,n) is independent of x as is seen by comparison of equations

(4i) and (42). The function Je can be evaluated analytically in closed

form for special pairs of values of m and n. For example, Be(3,3) =
11

1.316 by use of the function fw(m) in Fig. 2.

Both the low and the high Prandtl number methods and the exact

solution for any Prandtl number yield expressions for Nue(x)/

which are independent of x as the comparison of equations (21), (25),

(29), (39), and (42) shows. The functions Nu2(x)/ _ are repre-

sented in Fig. 3 versus m for n = 0 and Pr = 0.7. The three methods,

therefore, yield identical results for Nu2(x)/Nu2(x*), where x* is any

reference value.

VI. THE FUNCTIONS Ue(X) AND cf(x) FOR THE INVESTIGATED CASES

Incompressible potential theory yields the velocity distribution

u (_) = 2u= sin
e

(43)

at the surface of the circular cylinder presented in Fig. 5. In the

vicinity of the stagnation point of this cylinder, Ue(X o) = 4U_o/L,

where the coordinate xo measures along the circumference of the circular

cross section, which possesses the diameter L = 2R; c then has the value

c = 4. According to references 8, the velocity distribution



!3

3 5

e = 3.6314 .--- 2.1709 - 1.5144 + ... with c = 3.6314
Uoo

(44)

follows from the measured pressure distribution around a circular

cylinder in an airstream with the Reynolds number 19,000.

The functions

_i = al cos qD and NI = bl sin (45)

with al -- I+ , b I = I- , and 0 < a < R

represent the conformal mapping of the _l - Nl plane, Fig. 6, on the

_O " No plane, Fig. 5. The corresponding relation between the complex

stream functions in the _l " N1 plane and in the to - No plane yields

(e.g., p. 121 of reference 18)

Ue (_0(x)) = 1+% (46)

um _l+%2ctg2 q01 '

bl

where % = --.
al

In a vicinity of the stagnation point x = _ = 0,

Ue(q°) i+_. l+%X xo xl f ____,_• o i+% i+% Xl i-_ i xl

uoo --i--_ = _ _ and-_ = _ _ = _,_ _l k l+h/l+ = _, (47)

because of a2/R 2 = (i-_)/(i+_). Equation (47) yields

u (xl) i+_ xl
e = 2 7--_ for xl << i, (48)
Boo

where L = 2al. The functions (43) and (44) for the circular cross

section and the function (46) for several elliptic cross sections are

presented in Fig. 7.

Fig. 8, which represents data taken from reference 4, shows the

surface velocity distribution Ue(X)/U_ in planar incompressible flow for

a single airfoil, t/L _ =, and for the same airfoil in a cascade with

t/L = 0.5.
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According to p. 136 of ref. 19, the expression

•u2 L 3. 863 + 0.413 -
2 o0 2 2 2

(49)

for the wall friction coefficient follows from a series expansion of the

solution for the laminar incompressible boundary layer in case of a

circular cylinder with the velocity distribution (43). Fig. 9 presents

cf(x) _ versus x/L as following from the equation (37) for a flat

plate _ith m _ 0, from equation (49) for the circular cylinder, and from

a K_rm_n-Pohlhausen analysis for the ellipses with the ratios 1:2 and

1:4 of the minor and major axes (see p. 217 of ref. 19).

VII. DISCUSSION OF THE RESULTS

The heat flux equation

_T(x,0) d fqw(X) = - k By = pgCp _x u(x,y)[r(x,y) - To ] dy (50)

o

of the temperature boundary layer is obtained by integration of the energy

equation (3) across the boundary layer from y = 0 to the outer edge.

Since the temperature as a function of ycannot possess a point of inflec-

tion in problems of convective heat transfer with negligible frictional

heating in the absence of mass transfer at the wall, equation (50) shows

that the wall heat transfer rate qw(X) increases together with the level

of the velocity component u(x,y) in the vicinity of the wall.

If a heat transfer problem of the type being considered with

0 < Pr < _ is treated by use of the low Prandtl number method, u(x,y)

is replaced by Ue(X), where u(x,y) j Ue(X ). The error of the low Prandtl

number method, therefore, is positive and in general increases together

with the boundary layer thickness, i.e., with x. The error then should

take a minimum value at the forward stagnation point x = 0.

If a heat transfer problem with 0 < Pr < _ is treated by use of the

high Prandtl number method, u(x,y) is replaced by its wall tangent

y_w(X)/B. The error of the high Prandtl number method, therefore, is

positive between the forward stagnation point x = 0 and a point close to

the point x = xm of minimum pressure; since u(x,y) as a function of y

has a point of inflection for x _Xm, the error is negative in the range

< x < Xs, where x s is the point of separation or transition of the
aminar boundary layer.
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The x-independent relationship (15) between Nu I and qw(X) in case

of constant wall temperature Tw shows that these conclusions on the

deviations of the low and the high Prandtlnumber methods from exact

solutions are valid for Nut(x) as well as for qw(X). Therefore, the low

Prandtl number overestimates both Nul(x)/_ and Nui(x)/Nu1(0 ) at rates

which increase together with x. The high Prandtl number method over-

estimates Nu1(x)/_jR--_1 in the range 0 _ x < x m and underestimates

NUl(X)/\_ for x > x m. The comparison of the two methods under dis-

cussion to exact similarity solutions in Fig. 3 confirms these con-

clusions. In particular, the error of the high Prandtl number method

has different signs for m > 0 and for m < O.

If the inevitable small inaccuracies of the quoted and of the calcu-

lated results are taken into account, figures i0 through 15 confirm for

constant wall temperature that the low Prandtl number method overesti-

mates Nul(x)/NUl(0 ) at a rate which increases together with x. The

presented examples show that the high Prandtl number method under-

estimates Nui(x)/Nul(0 ) for 0 < x < xm in case of slender bodies. These

conclusions still are valid between x = 0 and a point close to x =

where _ is defined by Tw(_) = To in case of variable wall temperature

Tw = Tw(X ) (Figures 16 - 18).

The presented results, in particular the comparison of Figures I0

and 19 or 13 and 20, show for both the low and the high Prandtl number

methods that the deviation of Nu/R_ from pertinent exact or approximate

solutions can be represented as the product of large x-independent contri-

butions, inherent to the methods, and of small x-dependent modifications,

where only the latter part remains in Nu(x)/Nu(0). This explains why it

is advantageous to employ the result Nu(x)/Nu(0) of the low or the high

Prandtl number methods rather than their result Nu(x)/_-_.

If Tw(x) = const, in a small vicinity of the forward stagnation point

x = 0, the evaluation of exact similarity solutions, e.g., equation (21),

furnishes exact expressions for Nu1(O)/_, which depend correctly on Pr.

The exact factor NUl(0)/_l times the result Nul(x)/NUl(0 ) of the low or

the high Prandtl number methods yields satisfactory approximations to the

exact solution for Nul(x)/_, and this in the total range of Prandtl

numbers.

Contrary to other calculation methods for the wall heat transfer as

a function of x in case of arbitrary cross sections, both the low and

the high Prandtl number method result in closed-form solutions. A com-

parison of equations (18) and (36) shows that the numerical evaluation

of the high Prandtl number method is more involved than the one of the

low Prandtl number method, in particular, if Tw(X ) $ const. Also, the

input function Ue(X ) of the low Prandtl number method follows from ideal

fluid flow theory, whereas the high Prandtl number method depends on the

wall friction coefficient cf(x), which is a result of boundary layer

analysis.
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VIII. CONCLUSIONS

Both the low and the high Prandtl number methods yield closed form

solutions for the wall heat transfer in the two limiting cases Pr _ 0,

achieved through B _0, and Pr _, respectively. The error is investi-

gated which is due to approximating a given heat transfer problem with

0 < Pr < _ by the limiting problems. The results for Nul(x)/Nu1(0 ) of

the low or the high Prandtl number methods yield significantly closer

approximations than their results for NUl(X)/_Re _. The expressions

Nu2(x)/Num(x*) as obtained from the low and the high Prandtl number

methods and from exact boundary layer solutions coincide in the simi-

larity case defined by the power laws (19) for Ue(X ) and Tw(x ) - To . It
is shown theoretically and confirmed by the numerical results that the

low Prandtl number method yields an upper limit for both Nul(x)/_ and

Nui(x)/Nu1(0 ). Theoretical conclusions and the presented data yield the

result that the high Prandtl number method overestimates NUl(X)/_ in

the region of accelerated flow and underestimates Nul(x)/_ in the

region of decelerated flow. The presented examples show for slender

bodies that the high Prandtl number method furnishes a lower limit for

Nu1(x)/Nul(0 ) in the region of accelerated flow. Since exact solutions

for NuI(0)/_R_I exist at the stagnation point x _ 0 for a wide range of

Prandtl numbers, if the temperature Tw = const, in a small vicinity of

the stagnation point, the product of the exact factor Nul(0)/_ and

of the results Nu1(x)/Nul(0 ) of the low or the high Prandtl number methods,

respectively, yields satisfactory approximations for Nul(x)/_ in the

range 0 ! Pr <_ _. The amount of work involved in calculating the input

function Ue(X) and in evaluating the low Prandtl number method is signifi-

cantly smaller than the amount of work involved in solvin_ the boundary

layer equations for the input function cf(x) _ and in evaluating the

high Prandtl number method.
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APPENDIX

THESOLUTIONOFTHEEQUATIONS(7) - (i0)

The differential equation (7) together with the initial and boundary
conditions (8) - (i0) maybe solved by the expression

T(_,_)- To = Nf[Tw(N)-To] _ F(_'N'_) dN' (A-I)

according to p. 62 of reference I, where N is a dummyvariable for _ in
the limits 0 _ _ _ _. The function

_ _a kF(_-_,_) = 2 e d_ with A = --

pgCp

X

2 7 e-(2is related to the error integral erf x = -- d_.

Go

(A-2)

Both F(_-N,_)

and its derivatives are well defined for _ < _ and their limits exist as

_ _ for _ > O; at the point _ = 0 and N = _, however, these functions

do not possess unique limits. The equations (A-I) and A-2 yield the

relation

Jr _,_[Tw(_-To] exp[-_2/4A(_-N)] dN for _ > 0T(_,_)-T o 3/2 "

2 _ N=0 (_-N) (A-3)

It is immediately seen that the relation (A-3) satisfies the conditions

(8) and (I0). Since the derivatives of (A-3) exist for _ > 0, it can

be shown for @ > 0 that the relation (A-3)satisfies the differential

equation (7). It is shown in the following paragraph that the relation

(A-3) satisfies the remaining boundary condition (9)if Tw(0) = To.

Equation (A-3) becomes

2
T(_,_)-To = _ [Tw(/-_2/4Ape)'To ] e-p dp

__Ji__

(A-4)
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when the coordinate transformation

(A-5)

is introduced, which relates the independent variables N and _ and which
exists if _ > 0 and _ > 0. The integrand in equation (A-4) possesses
the following finite discontinuity at the point defined by D = 0 and
4=0:

(A-6)

T(_)-T ° for _ > _ and _ > 0
lim T - - T =

-_0 4AH o ITw(0)-ToI= 0 <ITw(_)-TolfOr _ = 2_and 9 > 0:

The integral in equation (A-4) can be expressed as the sum of the "main

part" pertaining to the range _ + _ < D _< 0% where 0 < e << l, and

of the "remainder" for the range _ <_ _ <__e + _ . If the integrand

in the remainder is repiaced by its upper bound Tw(_)-T o, according to the
relations (A-6), it is seen for _ > 0 that the resulting upper bound of

the remainder tends to zero together with e at any value of 4- Because of

e-B dB = _/2 the main part then tends to the limit Tw(_)-T
O

O

when E and _ tend to zero independently of one another; i.e., the boundary

condition (9) is satisfied by the relation (A-3).

The integration by parts is valid in the right-hand side of equation

(A-3) since the integrals converge uniformly for _ > 0 and 0 < _ < _ .

Because of _F/_ = - _F/_N and lim F(_-_,_) = 0, equation (A-3) then becomes

_7 dTw (_)T(_'_)-To = d_ F(_-_,_) d_ for _ > 0 and Tw(0) = To.

_=0 (A-7)
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Since equation (A-7) maybe differentiated if , > O,

dTw(N)

_T__ = _ 2 / dN for _ > 0 and T (0) = T •
exp I-_2/4A(_-_) ]

n= 0 2 (A-8)

The integrand in equation (A-8) possesses a finite discontinuity at the

point defined by N = _ and _ = O. Because of 0 i exp [-*2/4A(_-N)] < i,

it may be shown by an argument following the one presented above that the

limiting form of the equation as , _ 0 is

_ = - dN for _ >_.0. (A-9)

N=0

For constant wall temperature, T_._(_) - To m Tw(O) - To = const.,

equation (A-I) becomes, because of _FT_ =-_F/_N,

T(_,*)-T
0 = -[Tw(0)-To] F(_-_,*)

_=_

_=0

except at the point defined by _ = 0 and , = 0.

oo

e d_= 2-_'-[Tw (0) -T° ] 7 __e

4/2 _ (A- 10)

Equation (A-10) satisfies

the initial and boundary conditions (8) - (i0) because of /e-_ 2 d_ =

O

Also,

_T(_,*) = -2 [Tw(0)_To] exp[-*2/4A_] and (A-II)

__k Tw (0)'T
_T(_,0) _i__..L o for _ > 0. (A-12)

If Tw(0) $ To , the temperature gradient _T/_ does not exist at _ = * = O.
This singularity of the solution is due to the incompatibility of the

initial condition (8) and the boundary condition (9) in case of

Tw(0 ) $ To;because of the first part of equation (17), the limit
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lim Ue(_) _ is finite. The equations (A-9) and (A-12), there-
_ 0

fore, yield the following expression for the temperature gradient _T/_y

at the wall y = 0:

_T(x,0) _T(x,0) I_ VTw(0)'T° N=_(X)dTw (B)

8Y - _ _Y = - Ue(X) L _-_-_ _=0

_ •

(A-13)

F 7

where I|Tw(0) - T | / / _ (x) corresponds to the distribution
O |

Twl(_ ) - T = Tw(O) - T = const, and the integral correspondso o

to Tw2(_) = Tw(_) - Tw(0). Clearly_ the sum

TwI(_) - To + Tw2(_) = Tw(_) - To represents the given wall

temperature distribution.
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Nood.moosiooa,walltompo,aturo ,adioot
versus Prandtl number Pr for flat plate at constant wall temperature

in uniform flow, data taken from Fig. 1 of Ref. 14.

Curve No. 1: Result of Ka_rma_n-Pohlhausen analysis, presented in Ref. Z1

Curve No. 2: Low Prandtl number approach

Curve No. 3: Low Prandtl number approach plus correction term taken from

Ref. 14

The points marked by Q represent the exact solution in Ref. 16.

0.8

o

' 0.6

0.4

I

___ 0.2

1_4. I I
X

Ucl _ I I II III |

_.1_ L -J

II

J
J

J
J

0 0,2 0.4 0.6 0.8 1.0

Pr

FIG. 1. NON-D IMENS IONAL WALL TEMPERATURE GRAD lENT
FOR FLAT PLATE
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!

/
1

0.25

f

I!

fw(m) = 0.5 cf(x) __versus m for

velocity distribution (19), u e (x)/u= = C (x/L) m.

Curve No. 1: Follow8 from 7 points presented in
Table 5 of Ref. 12

Curve No. 2: Follows from 3 points prelented in
Table I of Ref. 5

1.00 1.75 2.50 3.25 4.00

m

FIG. 2. NON-D IMENSIONAL FRICTION COEFFIClENTFROM
EXACTSIMILARITY SOLUTIONS
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/

I

I

'jo /

i / /
/i "

ii/°

Nu z(x)/_-_ versus m for Pr = 0.7 for constant wall temperature T w
and ue (x)/uo = C (x/L) m. The points marked by O, @ , and • represent

exact numerical solutions of the boundary layer equations; the points

marked by C) appear in Table II of Re£. 5; the points marked by ® are

the result of dividing the numbers presented in Tables i-4 in Ref. 10 by

_4(m + I)/2 ; the points marked by • follow from a re-evaluation of

numbers presented in Table I in Ref. IZ in order to account for different

definitions of Nu and Re.

Curve No. l: Evaluation of the correlation (Zl) of exact solutions

I Curve No. Z: Low Prandtl number method, Equation (29)

[ Curve No. 3: High Prandtl number method, Equation (42)

I l
0 I 2 3 4

m

FIG. 3, Nuz(x)/v_z(x) FROM EXACT SIMILARITY SOLUTIONS
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Nu 2 (x)/_]Re 2 (x)Pr versus Pr for a flat plate with Ue(X) = u. at constant wall

temperature T w.

Curve No. 1: Exact numerical solution derived in Ref. 22

Karman-Pohlhausen analysis in Ref. 21, yieldingCurve No. 2: Result of /

Nuz(x) A/Re2 (x)Pr = 0.529/(1 + 0.SZWP-r)

Curve No. 3: Low Prandtl number approach, Equation (12)

Curve No. 4: Low Prandtl number approach plus correction term taken from

Ref. 14, yielding Nuz(x)/QRez(x)Pr = 0.564 - 0.547 P_P_

Curve No. 5: High Prandtl number approach, Equation (32)
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0. 70

O.60
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0
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U_

!_

"-'-- I

h ._1
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®

)I0 .0Z0 .030

Pr

FIG. 4. Nu2(X)LvARe2(x)PrFOR FLAT PLATE
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FIG. 5. CIRCULAR CYLINDER IN UNIFORM PLANAR

FLOW IN THE _'o" 3o PLANE

1.,1-_1:D

:. a.! -':-

FIG. 6. ELLIPTICAL CYLINDER IN UNIFORM PLANAR

FLOW IN THE _, - 'r/t PLANE



26

u e (x)/u,. for several cylinders in uniform planar flow.
Curve No. 1: Evaluation of the Equation (43) for the circular cylinder,

which follows from potential theory
Curve No. 2: Evaluation of the Equation (44) for the circular cylinder,

which follows from measurements at Re i = 19,000, see
Ref. 8

Curve No. 3: Evaluation of the Equation (46) for the elliptic cylinder
with the ratio 1:2 of the axes

Curve No. 4: Evaluation of the Equation (46) for the elliptic cylinder
with the ratio 1:4 of the axes

2.0

1.6

1.Z

0.8

0.4

I//"
®

0.40 0.80

x/L

I
I

tI
I

I
|

1.ZO

\

1,60

FIG. 7. VELOCITY DISTRIBUTIONS AT SURFACES OF

CIRCULAR AND ELLI PTIC CYLINDERS
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u e (x)/u_ versus x/L for airfoils in uniform planar flow, data taken from
p. 98 of Ref. 4.

Curve No. 1: Single airfoil, t/L =co
Curve No. Z: Same airfoil in cascade flow with t/L = 0.5

_0

t

\®

0 0.2 0.4 0.6 0.8 1.0
x/L

FIG. 8. VELOCITYDISTRIBUTIONS AT SURFACEOF AIRFOIL
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U

Curve No. 2:

Curve No. 3:
9.0--

7.5

6.0

4.5

3.0

1.5

0
0

cf (x) _ versus x/L for laminar incompressible flow.

Curve No. 1: Evaluation of the function cf _ = 2f"w (0) _7-x,

which follows from Equation (37) for the flat

plate, m = 0

Evaluation of Equation (49) for the circular cylinder

Result of Ka/rma'n-Pohlhausen analysis presented on_

p. 217 of Ref. ]9 for elliptical cylinder with ratio

1:4 of axes

Curve No. 4: Result of Ka/rma"n-Pohlhausen analysis presented on

p. 217 of Ref. 19 for elliptical cylinder with ratio

1:2 of axes

1
I /

®

®

\

/
0.20 0.40 0.60 0.80

x/L

1.00

FIG. 9. FRICTION COEFFICIENT FOR FLAT PLATE, CIRCULAR,
AND ELLI PTIC CYLINDER
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1.00

0.80

bI/a I = 1/4

_-a I --4-

I I Nu t (x)/Nu I (0) versus x/L for elliptical cylinder with

II ratio 1:4 of axes and constant wall temperature T W.

_Ii Curve No. I: Result of Ka/rmaln-Pohlhausen analysispresented on p. 185 of Ref. 6

ii_ Curve No. Z: Result of KalrmaC'n-Pohlhausen analysis

presented in Ref. 4

Curve No. 3: Low Prandtl number approach,

0.60 ,,,, x Equation (18)
I,'11_ Curve No. 4: High Prandtl number approach,

0.40 _\ " I

-<<
0 zo -'.,,u._:..._.. _

0 O. 20 0.40 O. 60

x/L

0°8

FIG. I0. Nu I(x)/Nu_ (0) FORELLIPTICAL CYLINDER 1:4,
Tw- CONST.
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1. O0

0.80

O. 60

0.40

O.ZO

Nu I (x)/Nu I (0) versus x/L for elliptical cylinder with

the ratio 1:2 of axes and constant wall temperature

Tw.

Curve No. l: Result of I_rrrza/n-Pohlhausen analymis

presented on p. 185 o£ Ref. 6

Curve No. Z: Low Prandtl number approach,

Equation (18)

Curve No. 3: High Prandtl number approach,

Equation (36)

bt/a_ = I/Z

0.Z0 0,40 0.60 0.80
x/L

FIG. 11. Nua(x)/Nuj (0) FORELLIPTICALCYLINDER 1:2,

Tw= CONST.
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O
v

Z

x
v

Z

1.00

O.80

0.60

0.40

O. ZO

bI/a 1 = 2 / 3

X ,
I

\ '•_---- L -----_

I

-®

Nu I (x)/Nu I (0) versus x/I, for elliptical cylinder with ratio 1:1.5 of
axes and constant wall temperature Tw.
Curve No. 1: Interpolation from curves presented on p. 185 of Ref. 6
Curve No. 2: Low Prandtl number approach, Equation (18)

, l I

0.20 0.40 0.60
x/L

0.80

FIG. 12. Nu, Cx)INu,(0)FOR ELLIPTICAL CYLINDER 1:1..5,

Tw-CONST.
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i. O0

0.80

O. 60

Z

x

Z

0.40

0. ZO

\
\

\
\

Nu I (x)/Nu I (0) versus x/L for circular cylinder with constant wall

tempe rature

Curve No. 1:

Curve No. Z:

_ Curve No. 3:

Curve No. 4:

Curve No. 5:

Tw0

Result of Kalrmaln-Pohlhausen analysis taken from p. 185

of Ref. 6 for Equation (43) representing Ue(X)/U .

Follows from series expansion Nu I (x)/R_)-_l = 0. 9449-
- 0. 5100 (x/L) 2 - 0.5956(x/L) 4 + .... which is presented

on p. 20 or Ref. 8, for Equation (44) representingue(X)/U _

Low Prandtl number approach pertaining to Equation (43)

for u e (x)/u.

Low Prandtl number approach pertaining to Equation (44)

representing u e (x)/u_
High Prandtl number approach pertaining to Equation (43)

representing u e (x)/u..

0. ZO 0.40 0.60

x/L

0.80

FIG. 13. Nut (x)/Nu, (O)FORCIRCULAR CYLINDER,
Tw= CONST.
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1.00

,--4

¢:;
v

z

z

0.80

0.60

0.40

O. 20

Nu 1 (x)/Nu I (0.1) versus x/L for single airfoil in

uniform flow with Ue(X)/UG, prcsented in Fig. 8 and

constant wall temperature T w.

Curve No. 1: Result of K_rm_n-Pohlhausen analysi_

presented on p. 98 of Ref. 4

Curve No. Z: Low Prandtl number approach,

O. 20 O. 40 O. 60 0.80

x/L

FIG. 14. Nu_(x)/Nu_(O. 1) FOR SINGE AIRFOIL, Tw=CONST.
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I.O0

A

Z

2:

0.80

O.60

0.40

0.20

\

t

Nu I(x)/NuI(0.I) versus x/L for airfoilin cascade flow with Ue(X)/U .

presented in Fig. 8 and constant wall temperature TW; t/L = 0.5.
Curve No. I: Result of Ka/rm_n-Pohlhausen analysis presented on p. 98

of Ref. 4

Curve No. 2: Low Prandtl number approach, Equation (18)

0.20 o.40 0.60

x/L

0.80

FIG. 15. Nu, (x)/Nu I (0. 1) FORAIRFOIL IN CASCADE,
Tw= CONST.
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Nu I (x)/Nu I (0) versus x/L for elliptic cylinder with

ratio 1:4 of axes and variable wall tcmperature

T w (x) - T O = IT w (0) - To] cos (_xl0. 899L).

Curve No. 1: Result of K_rme(n-Pohlhausen analysis

presented on p. 106 of Ref. 4

Curve No. 2: Low Prandtl number approach,

Equati on (18)

Curve No. 3: High Prandtl number apFroach,

Equation (36)

b I /a I = 1/4

U_ _

-0 4
0 0.2 0.4

FIG. 16.

®

®
_ J

//

/
0.6 0.8

x/L

NuI (x)/NuI (01FORELLIPTICAL CYLINDER h4.
Tw _ CONST.

i.0
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7.5

c_
v

Z

Z

6.0

4.5

-1.5

-3.0

Nu I (x5/Nu I (0.25 versus x/L for flat plate with

variable wall temperature

Vw(x5 - T O = IT w(O) - To] cos (vrx/L).
Curve No. 1: Result of K_rm_n-Pohlhausen analysis

presented on p. 104 of Ref. 4 for
Pr = 10

Curve No. 2: Result of K_rm_'n-Pohlhausen analysis

presented on p. I04 of Ref. 4 for
Pr =0.7

Curve No. 3: Low Prandtl number approach,

Equation (185

Curve No. 4: High Prandtl number approach,

Equation (365

u.

X

-- r----
i_ -_I

L -7

\
\®

0 0. Z0 0.40 0.60 0.80 1.00

x/L

FIG.17. Nu,(x)INu_(0.2)FOR FLAT PLATE,Tw_:CONST.
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Nu3 (x)/Nu3 (0) versus x/L for flat plate with var,.able wall temperature

Tw(x)/T o = 1.25 - 0.83x/L + 0. 33(x/L) 2, where Nu 3 (x) = xqw{x)/kT O.

Curve No. 1: Result of e'eact series expansio:_ of solution on p. 561 of

Ref. 2

Curve No. 2: Low Prandtl number approach, Equation (12)

Curve No. 3: High Prandtl number approach, Equation (32)
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FIG. 18. Nu3(x)INu3(O) FOR FLAT PLATE, Tw#CONST.
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L -_® \
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___ bl/a 1=1/4 __

U_ _2

Nu!(x) R/q_l versus x/L for elliptic cylinder with
ratio 1:4 of axes, constant wall temperature T w,
and Pr = 0.7; the curves 1, 3, and 4 are explained

in the legend of Fig. 10.

FIG. 19.

0.2 0.4 0.6

x/L

Nul (X)/-v_l FOR ELLI PTICAL CYLINDER 1:4,

Tw- CONST.
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0
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Nu I (x)/R'f_t versus x/L for circular cylinder with constant wall

temperature T w, and Pr = 0.7; the curves 1, _, and 5 are explained

in the legend of Fig. 13.

FIG. 20,
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O. ZO 0.40 O. 60 O. 80

x/L

Nu_(xl/_e a FOR CIRCULAR CYLINDER,

Tw-- CONST.
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